12

Kinetic Theory

Diagram Based Questions :

1. The density (ρ)versus pressuure (P) of a given mass of an ideal gas is shown at two temperatures T₁ and T₂

Then relation between T_1 and T_2 may be

- (a) $T_1 > T_2$
- (b) $T_2 > T_1$
- (c) $T_1 = T_2$
- (d) All the three are possible
- 2. The given P-V curve is predicted by

- (a) Boyle's law (b) Charle's law
- (c) Avogadro's law (d) Gaylussac's law

3. One mole of an ideal diatomic gas undergoes a transition from A to B along a path AB as shown in the figure.

The change in internal energy of the gas during the transition is

(a)	-20 kJ	(b)	20 J
(c)	-12 kJ	(d)	20 kJ

4. The figure shows the volume V versus temperature T graphs for a certain mass of a perfect gas at two constant pressures of P_1 and P_2 . What inference can you draw from the graphs?

- (a) $P_1 > P_2$
- (b) $P_1 < P_2$
- (c) $P_1^1 = P_2^2$

CLICK HERE

>>>

(d) No inference can be drawn due to insufficient information.

🕀 www.studentbro.in

Solution

(b) According to ideal gas equation 1. PV = nRT $PV = \frac{m}{M}RT$, $P = \frac{\rho}{M}RT$ or $\frac{\rho}{P} = \frac{M}{RT}$ or $\frac{\rho}{P} \propto \frac{1}{T}$ Here, $\frac{\rho}{P}$ represent the slope of graph Hence $T_2 > T_1$ 2. **(a)** 3. (a) Change in internal energy from $A \rightarrow B$ $\Delta U = \frac{f}{2} nR\Delta T = \frac{f}{2} nR (T_f - T_i)$ $=\frac{5}{2} \{P_f V_f - P_i V_i\}$ (As gas is diatomic \therefore f = 5) $=\frac{5}{2} \{2 \times 10^3 \times 6 - 5 \times 10^3 \times 4\}$ $= \frac{5}{2} \{12 - 20\} \times 10^3 \text{ J} = 5 \times (-4) \times 10^3 \text{ J}$ $\Delta U = -20 \text{ KJ}$ (a) $:: \theta_1 < \theta_2 \Longrightarrow \tan \theta_1 < \tan \theta_2$ 4. $\Rightarrow \left(\frac{V}{T}\right)_1 < \left(\frac{V}{T}\right)_2$ From $PV = \mu RT$; $\frac{V}{T} \propto \frac{1}{P}$ Hence $\left(\frac{1}{P}\right)_1 < \left(\frac{1}{P}\right)_2 \Rightarrow P_1 > P_2$.

Get More Learning Materials Here :

